Deep-Focus Repeating Earthquakes in the Tonga–Fiji Subduction Zone
نویسنده
چکیده
Abstract Deep-focus earthquakes in the Tonga–Fiji subduction zone make up greater than 66% of the globally recorded deep seismicity. The high number of deep-focus seismicity in this active subduction zone allows us to search for deep-focus similar earthquake pairs and repeating earthquakes. We compile a waveform dataset for deep earthquakes with magnitude above 4.7 occurring in the Tonga–Fiji–Kermadec subduction zone recorded teleseismically between 1990 and 2009. We identify 8 similar clusters and 18 similar doublets with an average cross-correlation coefficient greater than 0.8 among more than 45,000 potential earthquake pairs. These similar doublets and clusters are located in the central part of the Tonga–Fiji slab at the depth range of 480–650 km. A master event relocation algorithm is used to determine the precise relative location and depth among these similar earthquake pairs. We estimate and superpose circular fault areas for these similar clusters and doublets and find that one similar doublet appears to be a deep repeating earthquake pair. This deep doublet has a small separation less than 0.4 km and overlapping rupture areas, indicating that the same fault appears to slip. Other deep similar earthquake pairs are spatially offset or do not exhibit overlapping rupture areas. Time separation is on the order of years for the majority of similar earthquake pairs. Thermal (plastic) shear instability is more likely to explain these deep repeating earthquakes and similar earthquake pairs.
منابع مشابه
Slab temperature controls on the Tonga double seismic zone and slab mantle dehydration
Double seismic zones are two-layered distributions of intermediate-depth earthquakes that provide insight into the thermomechanical state of subducting slabs. We present new precise hypocenters of intermediate-depth earthquakes in the Tonga subduction zone obtained using data from local island-based, ocean-bottom, and global seismographs. The results show a downdip compressional upper plane and...
متن کاملShearing instabilities accompanying high-pressure phase transformations and the mechanics of deep earthquakes.
Deep earthquakes have been a paradox since their discovery in the 1920s. The combined increase of pressure and temperature with depth precludes brittle failure or frictional sliding beyond a few tens of kilometers, yet earthquakes occur continually in subduction zones to approximately 700 km. The expected healing effects of pressure and temperature and growing amounts of seismic and experimenta...
متن کاملEarthquake faulting in subduction zones: insights from fault rocks in accretionary prisms
Subduction earthquakes on plate-boundary megathrusts accommodate most of the global seismic moment release, frequently resulting in devastating damage by ground shaking and tsunamis. As many earthquakes occur in deep-sea regions, the dynamics of earthquake faulting in subduction zones is poorly understood. However, the Integrated Ocean Drilling Program (IODP) Nankai Trough Seismogenic Zone Expe...
متن کاملPossible seasonality in large deep-focus earthquakes
Large deep-focus earthquakes (magnitude> 7.0, depth> 500 km) have exhibited strong seasonality in their occurrence times since the beginning of global earthquake catalogs. Of 60 such events from 1900 to the present, 42 have occurred in the middle half of each year. The seasonality appears strongest in the northwest Pacific subduction zones and weakest in the Tonga region. Taken at face value, t...
متن کاملDepth-varying rupture properties of subduction zone megathrust faults
[1] Subduction zone plate boundary megathrust faults accommodate relative plate motions with spatially varying sliding behavior. The 2004 Sumatra-Andaman (Mw 9.2), 2010 Chile (Mw 8.8), and 2011 Tohoku (Mw 9.0) great earthquakes had similar depth variations in seismic wave radiation across their wide rupture zones – coherent teleseismic short-period radiation preferentially emanated from the dee...
متن کامل